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A B S T R A C T

Solving large scale optimisation problems over space and time quickly generates a computational impasse,
termed the ‘curse of dimensionality’. This severely limits the practical use of economic models, especially for
determining the effects of climate change and protectionist trade policies. In this paper, we employ an inno-
vative approach to solving (otherwise unsolvable) large scale systems through the use of parallel processing
methods and a proper ordering of variables and equations in a ‘Nested Doubly Bordered Block Diagonal’ form.
We illustrate how the approach can be used to solve an intertemporal CGE model with more than 500 million
equations. Using existing damage functions, the framework allows us to determine the impact of climate change
on long-run economic growth for 112 countries as a result of the effect of sea-level rise on land endowments,
variation in crop yields and productivity and shifts in the demand for energy and transportation. We also com-
pare our solution to more common (and smaller dimensional) recursive methods, in terms of both the economic
effects of climate change and potential increases in trade barriers, showing the power and efficiency of our
computational approach and parallel processing routine.

1. Introduction

It is not unusual to find numerical simulations that are dimension-
ally very large, especially in studies that examine potential distortions
in international trade and the economic impacts from climate change.
However, in economics, large scale models cause difficulties due to
the need to incorporate optimal behaviour and optimising routines.
This is especially the case in Computable General Equilibrium (CGE)
models. Solving such large scale optimisation problems over space and
time quickly generates a computational impasse, termed the ‘curse of
dimensionality’. The scale of the optimising model is simply too large to
solve, and this alone severely limits the practical use of many economic
models.

In this paper, we employ an innovative approach to solving large
scale systems through an ordering of variables and equations in a
‘Nested Doubly Bordered Block Diagonal’ (NDBBD) form. The NDBBD
approach allows for a highly efficient manipulation of a matrix of first-
order terms, saving computational space and allowing for substantial
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increases in dimension. As such, we extend Ha and Kompas (2016) and
Ha et al. (2017), more regional and country-specific trade models, to
solve a very large intertemporal and regional CGE model, showing how
the first-order differential matrix of intertemporal regional CGE mod-
els can be transformed into a NDBBD matrix. We combine this matrix
reordering with parallel processing techniques to facilitate computation
and illustrate how the approach can be used to solve an intertempo-
ral CGE model with more than 500 million equations. Using existing
damage functions, the framework allows us to determine the impact
of climate change on long run changes in GDP for 112 countries. We
also compare our solution to more common (non-optimal and smaller
dimensional) recursive methods in terms of both the economic effects
of climate change and potential increase in trade barriers, showing the
power and efficiency of our computational approach and parallel pro-
cessing routine.

The background on CGE modelling is fairly well known. During the
last 60 years, from the pioneering work of Johansen’s (1960) simple
model with 22 production sectors and one representative consumer,
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CGE models have grown in size and complexity. This was especially
the case after the introduction of the System of National Accounts in
1953 (United Nations, 1953), and its latest version in 2008 (EC et
al., 2009), by the United Nations, providing an extensive input-output
table database for many countries. These input-output databases have
enabled the construction of globally integrated economic and input-
output databases for trade analysis (Narayanan and Walmsley, 2008)
and global CGE models such as GTAP (Hertel, 1997), or the Global
Trade and Analysis Project, and its intertemporal version GTAP-INT
(Ha et al., 2017). The size of such intertemporal regional CGE databases
poses a challenge to computational capacity, severely limiting compu-
tational routines that use optimising frameworks.

Even modern software packages such as GEMPACK or GAMS, which
use a serial direct LU solver from HSL (2013) or LUSOL, a sparse LU
solver for system of linear equations (Saunders et al., 2018), become
incapable of solving intertemporal CGE models of even a modest size.
For those models, for example, with over 100 industries, it is only pos-
sible to solve the system simultaneously over a small number of time
periods (roughly 5) by the conventional LU decomposition method (i.e.,
the so-called ‘lower-upper’ method for factoring a matrix as the product
of a lower triangular matrix and an upper triangular matrix)(Dixon et
al., 2005).

Recursive methods have thus been employed instead as a second
best solution to overcome this computational challenge. In this setting,
using adaptive or static price level expectations, the expected future
values of variables are specified as functions of current or past values
(Dixon et al., 2005). The model can, therefore, be solved forward one
period at a time, making the dimension more manageable. Neverthe-
less, even in this setting, the computational burden is not negligible
as the number of time periods increases. Furthermore, with static or
adaptive expectations, agents fail to react to announced policy changes,
with known or projected future impacts, until they actually occur. This
is clearly dynamically inefficient.

Dixon et al. (2005) subsequently introduced a rational expectations
approach to repair the deficiency of static or adaptive expectations
modelling. Dixon et al. (2005) applies an iterative solution method
(Fair, 1979; Fair and Taylor, 1983) by ‘guessing’ all the future values of
expected variables, solving forward, and adjusting the values for these
variables after each iteration until convergence. With proper expecta-
tional rules, the rational expectation solution method may converge
to a full intertemporal solution and, therefore, can be used to analyse
announced policy changes in advance, at least in principal. However,
in practice, this rational expectations approach has been used to solve
dynamic CGE models for only a handful of periods. Its numerical sta-
bility is also in doubt since the studied CGE models do not always have
steady state outcomes Dixon et al. (2005). In short, the iterative proce-
dure is a relatively cumbersome process and does not always guarantee
convergence.

Another major attempt to solve full scale intertemporal CGE mod-
els uses a so-called MSG (McKibbin-Sachs Global) algorithm (McKib-
bin, 1987; McKibbin and Sachs, 1991). This solution method solves the
model in first-order Taylor expansion form by writing an approxima-
tion around a known solution path. The model is then condensed into
a system of linear differential equations by substituting out all other
endogenous variables. The system of linear differential equations is
solved using a special block diagonal structure where every equation
will have two consecutive values of flow or stock variables. Therefore,
at some time T (large enough for the model to converge to a steady
state), the flow variables will be solved backward one period at a time
in terms of current stock variables, all future exogenous variables and
the terminal value of the flow variables. When reaching period zero,
the system can be solved forward again to obtain solutions for flow and
stock variables for all future periods.

Although the MSG algorithm has a clear advantage over the tradi-
tional LU decomposition method, its weakness is its use of a first-order
approximation and although much larger in dimension than all previ-

ous intertemporal CGE models, it also is dimensionally constrained as
the method can not be employed to solve larger regional models effi-
ciently. There are no existing models, for example, with more than 12
or 15 regions.

Recently, Ha and Kompas (2016) and (Ha et al., 2017) apply a differ-
ent approach to solving intertemporal and regional models, proposing
a basic reordering of variables and equations method to shape the first-
order differential matrix arising from intertemporal or regional CGE
models into DBBD (Doubly Bordered Block Diagonal) or SBBD (Singly
Bordered Block Diagonal) form. SBBD is a special case case of a DBBD
reordering in the sense that there are only few intertemporal equations
in the model that can be exploited to transform a DBBD matrix into
SBBD form without significant loss in performance. The SBBD matrix
can be easily solved by HSL’s MP_48 solver HSL (2013) following Ha
and Kompas (2016). The extension to the NDBBD approach in the cur-
rent paper, along with the use of parallel processing techniques, pro-
vides an enormous increase in model dimension along with its portabil-
ity. The reordering method can be applied to regional or intertemporal
models, and even non-optimal recursive approaches to CGE modelling,
greatly increasing computational efficiency.

Section 2 of the paper briefly provides the structure for the full
intertemporal CGE model. Section 3 details the NDBBD approach and
section 4 applies the NDBBD form to an intertemporal CGE model.
Section 5 illustrates the benefits of our approach in terms of numeri-
cal performance. Section 6 shows the effects of climate change on the
growth in GDP in a large dimensional setting and in comparison to
more standard recursive approaches, and section 7 shows comparisons
to recursive models in terms of the potential imposition of trade barriers
across two regions. Section 8 concludes.

2. GTAP-INT

Put simply, a CGE model is a system of nonlinear equations that con-
nect the demands for goods and services (or commodities), in a given
economy, from households, firms and governments to the supplies of
these goods and services from various producers in that economy and
overseas. Firms combine inputs or factors of production such as land,
labour and capital with intermediate products to produce final output
which can then be sold domestically or in international markets. Taxes
are leveled and countries and regions are connected through a flow of
imports and exports.

Solving a CGE model, either static, recursive or intertemporal, is
as basic as solving any non-linear system. However, the underlying
first-order matrix as a result of optimising behavior can be very com-
plex (Hertel, 1997; Ha et al., 2017), with equations for equilibrium
prices and quantities across a number of goods, along with supplies and
demands over potentially many different countries, connected through
time.

2.1. Regional GTAP

The GTAP model (Hertel, 1997) is a special version of the CGE
model, a bottom-up regional model for the world economy. In its
simplest representational form, a GTAP model consists of two inter-
acting agents: consumers (regional households) and producers, along
with government, across more than 50 commodity groups. Regional
households obtain income from factor incomes and pay taxes and buy
goods and services from both domestic and international producers (via
private and government expenditures). Producers, in turn, as in any
CGE model, combine factors of production and other goods to pro-
duce output, in nested CES form, and sell their products to domestic
regional households and governments, or internationally. The demands
for goods depend on prices, incomes and other structural parameters.

The model itself consists of blocks of supply and demand equations
for regional producers, households, investment demand, net-imports
and the government, defined in an Armington-like structure or a nested
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consumption structure where the agents’ distribute their budget to types
of commodities first, then to point of sale (domestic, imported) (Arm-
ington, 1969). The demand and supply for goods and services is con-
nected via price linkages and a set of market clearing conditions. The
Armington structure itself is nothing more than a particular form of
the consumer’s utility function over commodites, in CES form, ensuring
that consumers satisfy conditions for optimality (e.g., equating marginal
rates of substitution to relative prices), generating demand for both for-
eign and domestic goods.

For the purpose of our paper, we follow (Ha and Kompas, 2014)
and look at a GTAP model as a regional CGE model, which consists
of separable regional economies with similar structures. There will be
equations which exist only within regions and equations which con-
nect two or more regional economies together. Similarly, there will be
variables with values that appear only in regional equations or will be
spread across regions in a single equation. Different structures will have
implications for the structure and reordering of the relevant first-order
matrix when we solve the system (Ha and Kompas, 2014).

2.2. Intertemporal GTAP

A fully defined intertemporal version of the GTAP model is devel-
oped in (Ha et al., 2017), where we replace fixed capital formation
and given allocations of investment across regional equation blocks in
the GTAP model by a long run profit (dividend) maximisation routine
for the producer, resulting in sets of two motion equations for capital
accumulation and its shadow price, or (using GTAP notation):
̇QO(“capital”, r, t) = CAPINCR(r, t)− "(r)QO(“capital”, r, t) (1)

#̇(r, t) = #(r, t)[RORG(t) + "(r)]− $(r, t)
2

( CAPINCR(r, t)
QO(“capital”, r, t)

)2

PS(“CGDS”, r, t) − PS(“capital”, r, t) (2)

where QO(“capital”, r, t) is the capital stock in region r at time t; RORG(t)
is the world interest rate at time t; CAPINCR(r, t) is the capital increment
(investment) in region r at time t; "(r) is the depreciation rate; #(r, t) is
the shadow price of capital in region r at time t; $(r, t) is the invest-
ment coefficient in region r at time t, which shows how much extra
investment must be made to obtain $1 increase in capital increment
CAPINCR(r, t); PS(“CGDS”, r, t) is the price of capital goods (CGDS) in
region r at time t; and lastly, PS(“capital”, r, t) is the rental price of cap-
ital in region r at time t.

By employing Equations (1) and (2) and time index for all of the
GTAP model equations, we thus link all global economies over time
using forward (Equation (1)) and backward (Equation (2)) connections.
For the system to be solvable, there will be two additional transversality
equations for each pair of Equations (1) and (2): one initial condition
(fixing initial capital QO(“capital”, r,0)); and one terminal condition:
#̇(r, t) = 0.

As Ha and Kompas (2016) show, the resulting system of GTAP
equations over time can be viewed as identically separable structural
economies for each period of time. The equations and variables can
thus be classified into intra-temporal and intertemporal equations and
variables and reordered to shape the first-order differential matrix in
terms of DBBD or, as a special case, an SBBD matrix. We now show
how this classification of equations and variables by region and time is
needed to solve a model with very large matrices more efficiently, in
NDBBD form.

3. The NDBBD matrix and direct method for solving a linear
system

In our previous work, Ha and Kompas (2014), we detailed the struc-
ture of a DBBD matrix. In this paper, we will look at a nested structure

with two layers of DBBD matrices. To illustrate, we begin with a linear
problem with a matrix in DBBD form:
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

A1 C1
A2 C2

… …
AI CI

B1 B2 … BI D

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

X1
X2
…
XI
XD

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

Y1
Y2
…
YI
YD

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

(3)

where Ai (i = 1… I) and D are rectangular matrices. The interface
matrix D has dimension S × S.

The nested structure begins with matrices Ai. In their turn, Ai are
also DBBD matrices:
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

ai
1 ci

1
ai

2 ci
2

… …
ai

L ci
L

bi
1 bi

2 … bi
L di

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

where ai
l (l = 1… L) and di are also rectangular matrices. The interface

matrices di have dimension si × si.
The solution method for a NDBBD matrix involves a backward and

forward recursive solution of DBBD matrices, where smaller inner DBBD
matrices are ‘pre-solved’ first, then the outer DBBD matrix is ‘pre-solved’
to generate an ‘outer-interface problem’. The solution of the outer-
interface problem will be used to ‘back-solve’ for all leftover unknowns.
The solution algorithm is similar to the one that has been used by
Yamazaki and Li (2011) and later by Ha and Kompas (2014), with the
exception that now the solution algorithm is nested. In particular, the
solution algorithm has five major steps as follows.

The LU decomposition and linear equation solving procedure in
Steps 1, 2, 3 and 5 can be done in parallel. That is one key to our bet-
ter numerical performance. Another is the size of interface problems in
step 1c and step 4 (Ha and Kompas, 2014). The matrices in these steps
(i.e., interface matrices) are not sparse and difficult to solve if they are
large, so the ordering of variables and equations should be optimised
for smaller interface matrices. Furthermore, the matrices vls and Vi are
solutions of a multiple right-hand side problem, hence they also are not
sparse and should not be stored explicitly to conserve memory. Instead,
we store its product with matrices bi

l or Bi to reduce storage require-
ments as suggested by Ha and Kompas (2014).

4. GTAP-INT model and its NDBBD form

From Ha and Kompas (2016) and Ha and Kompas (2014), we know
how to reorder equations and variables of intertemporal and regional
CGE models to shape the first-order deferential matrix to solve the sys-
tem efficiently. In this section, we take a step forward by reordering the
equations and variables of an intertemporal regional CGE model both
by time and region to shape the first-order deferential matrix in NDBBD
form.

Following Ha and Kompas (2016) and Ha and Kompas (2014), we
assume that we can classify equations and variables into intra-regional
and inter-regional and intertemporal and intra-temporal variables. We
then will have three kinds of variables: (1) those variables that are both
inter-temporal and inter-regional; (2) Those variables that are intra-
temporal but not inter-regional; and lastly, (3) the rest of the variables
(which are usually inter-temporal variables). We also classify equations
into three comparable types: (1) those equations that are both inter-
temporal and inter-regional; (2) Those equations that are intra-temporal
but not inter-regional; and lastly, (3) the rest of the equations. The rule
of thumb is if a variable has a value in two or more periods in a single
equation, then the variable can be classified as an inter-temporal vari-
able and it will be moved to the right-hand side to form the column
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Algorithm 1 Solution for NDBBD problem.
Step 1: Preparation:

Step 1a: LU decomposition ai
l save LU factor matrices.

Step 1b: Using the same LU decomposition solve the multiple right hand side problem: ai
lvi

ls = ci
ls, vi

ls are temporary variables and s ∈ si. vi
ls

forms the matrix vi
l.

Step 1c: Perform LU decomposition of interface matrix ipi = di −∑L
l bi

lvi
l save LU factor matrices. Note that vi

l can be a very dense matrix,
hence will never be stored to save memory. bi

lvi
l will be saved instead.

Step 2: Solve problem AiZi = Yi, where Zi is a temporary variable:
Step 2a: Let Yi = (yi

l , yi
d) and Zi = (zi

l, zi
d). Solve ai

lui
l = yi

l problem using saved LU factor matrices in Step 1a. ui
l is a temporary variable.

Step 2b: Solve the problem: ipizi
d = yi

d −
∑L

l bi
lui

l using saved LU factor matrices for ipi in Step 1c.
Step 2c: Calculate zi

l = ui
l − vi

lzi
d = ui

l −
1
ai

l
ci
lzi

d using the same LU decomposition in Step 1a as the above.
Step 3: Solve the multiple right hand side problem problem: AiVi = Ci, where Vi is a temporary variable, and multiply Vi to Bi to produce
matrix BVi. Vi can be very dense matrix, hence will never be stored to save memory. BVi will be saved instead. Step 3 is similar to Step 2 but
with a multiple right hand side. Let Cis = (cils, cids) and Vis = (vils, vids) as element vectors of Ci and Vi, where l, d denote the part of Ci,Vi that
belong to the diagonal L and interface parts of matrices Ai. Note that we repeat index set s here and it can be understood as the index of set S.
Similarly, let Bi = (bil, bid).

Step 3a: Solve ai
luils = cils problem using saved LU factor matrices from Step 1a. uils is a temporary variable.

Step 3b: Solve the problem: ipivids = cids −
∑L

l Bi
luils using saved LU factor matrices of interface matrices ipi from Step 1c.

Step 3c: Calculate vils = cils − uilsvids = cils − 1
ai

l
ci
lvids using the same LU decomposition from Step 1a as the above.

Step 3d: Form matrix Vi from Vis and multiply BiVi and add together to form matrix BVi
Step 4: Solve the ‘outer interface problem’: (D −∑i

i BVi)XD = YD −∑i
i BiZi.

Step 5: Calculate Xi = Zi − ViXD = Zi − 1
Ai

CiXD by resembling Step 3 above. This is to avoid storing the dense matrix Vi. Calculate a new vector
CXi = CiXD. We will solve the problem AiCZi = CXi, where CZi is a temporary variable. Let CXi = (cxil, cxid) and CZi = (czil, czid) as in Step 3.

Step 5a: Solve ai
luil = cxil problem (using saved LU matrices in Step 1a), where uil is another temporary variable.

Step 5b: Solve the problem: ipiczid = cxid −
∑L

l biluil using the saved LU decomposition of interface matrices ipi in steps 1c.
Step 5c: Calculate czil = uil − vi

lczid = uil − 1
ai

l
ci
lczid using the same LU decomposition as the above.

Step 5d: Form CZi from czil, czid and calculate Xi = Zi − CZi.

border, or the equation will be classified as an intertemporal equation
and will be moved downward to form bottom border blocks. The choice
of either an equation or a variable to be intertemporal is there to min-
imise the border block involved. If, for example, the size of a variable
is larger than the size of an equation (each equation and variable can
have many other indices so their size will be different), then we choose
the equation to be intertemporal and vice versa. Similarly with regional
indexes. The detailed rules for equation and variable classification can
be found in Ha and Kompas (2016) and Ha and Kompas (2014).

With the variables reordered by time for intra-temporal variables,
so that every intra-temporal variable in a single period is ordered to
be combined together in the same continuous space, all the rest of vari-
ables (e.g. intertemporal variables) are shifted to the far right hand side,
after the last period. Within the same period, we again order all vari-
ables in the same regions (intra-regional) to be combined together in
the same continuous space. Inter-regional (and intra-temporal) will be
ordered last after the last region. We do the same for all equations.

For a single period of time, for example, when we apply a differen-
tial operator to equations, the first-order differential matrix has a DBBD
form as matrix Ai in Section 3, or:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

ai
r1 ci

1
ai

r2 ci
2

… …
ai

rL ci
L

bi
r1 bi

r2 … bi
rL di

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

Off-border block, intra-regional variables thus have values only
within one region and the intra-regional equation can house values for
intra-regional variables only in one region. Therefore, diagonal blocks
form together in regional spaces (r1 … rL). On the right hand side and
along the bottom of the matrix, inter-regional variables can have values
in many regions, together, within a single equation, so that the right-
hand side blocks, ci

l (l ∈ 1...L), will not have block diagonal form. Sim-
ilarly, inter-regional equations can house variables with values across

regions and they (or bi
l) will also not have block diagonal form.

Stepping through time and space gives:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

At1 C1
At2 C2

… …
AtI CI

Bt1 Bt2 … BtI D

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

where Ai now becomes At1 and we have the same (as above) DBBD
matrix, albeit in a nested or NDBBD form. In the next section we show
how this simple reordering method can help solve an intertemporal
regional GTAP model more efficiently, in parallel.

5. Numerical analysis

5.1. GTAP model’s database

We use GTAP database version 7.1 (Narayanan and Walmsley,
2008). The full database includes 112 countries and regions and 57
commodities. The GTAP model with its full database translates into
a very large intertemporal CGE model with more than half a billion
endogenous variables and 260 million exogenous variables (Model ID
6 in Table 1). Note, as well, as specified previously (Ha and Kom-
pas, 2016), the intertemporal model needs to be solved for at least
40 periods to get accurate results. Therefore, for testing of numerical
performance, we drop all informational equations in the GTAP model
appendices, since these variables (mostly trading price, quantity and
welfare indices) can be calculated easily from the model results. Trim-
ming the appendices also removes some of the inter-regional equations
(i.e., mostly equations with summations over regional indexes), which
helps to improve computational performance.
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Table 1
GTAP model with varying levels of aggregation.
ID Model Size Number of endogenous variables Number of exogenous variables Number of non-zeros†

1 112 regions, 3 commodities, 47 periods 13939336 7850081 58,681,307
2 112 regions, 4 commodities, 47 periods 18,592,712 10,450,826 78,830,677
3 112 regions, 5 commodities, 47 periods 23,319,784 13,083,155 97,089,894
4 112 regions, 26 commodities, 47 periods 139612072 75,657,968 547479803
5 112 regions, 34 commodities, 47 periods 192462632 103159736 749419439
6 112 regions, 57 commodities, 47 periods∗ 505112836 260697767 1.815∗109

Note: † Number of non-zeros is an approximation.
Source: Authors’ calculation.

Fig. 1. The matrix without ordering.
Source: Authors’ calculation.

Fig. 2. The reordered nested matrix.
Source: Authors’ calculation.

5.2. Numerical performance

Figs. 1 and 2 show a graphical representation of the original
first-order derivative matrix of the GTAP-INT model and the reordered
matrix by our NDBBD method. For simplicity of illustration, the figure
is drawn from the GTAP model with only three regions and three
commodities with eleven time periods. The red and blue dots in Figs. 1
and 2 represent negative and positive elements of the first-order
differential matrix.

Table 2 shows the computational performance of our NDBBD
method versus the SBBD solution method in Ha and Kompas (2016).
We do not show the computational solution for the conventional LU

Table 2
Calculation time in seconds.

ID SBBD reordering NDBBD reordering Performance ratio
1 46.133858 115.809060 39.84%
2 85.192744 149.345154 57.04%
3 116.959756 205.926200 56.8%
4 3043.344883 3984.619880 76.38%
5 5352.380219 7500.384889 71.36%
6 – 26934.744446 –

Notes: (a) See Appendix B for machine configuration and Table 1 for model
size and number of variables. (b) All numerical experiments are carried out
with a one-step Johansen method or (equivalently) based on the first-order
Taylor expansion approximation (Pearson, 1991; Dixon et al., 1992). Time
is counted for the linear system (matrix) solution only.
Source: Authors’ calculation.

decomposition method (for example MA48 solver in Harwell Subrou-
tine Library HSL, 2013), as Ha and Kompas (2016) have shown a clear
advantage of the SBBD method over the conventional LU decomposi-
tion for intertemporal CGE models. We also skip showing the numerical
results of the DBBD method (Ha and Kompas, 2014) for the GTAP-INT
model, even though it is also a bottom-up regional model. When we
reorder GTAP-INT by region instead of by time, the netcut Ha and
Kompas (2014) usually is much higher than reordering the model by
time. The computational performance of DBBD in this case is worse
than SBBD.

We design the NDBBD solution method with the aim of solving very
large models. It has less advantage in the solution of smaller mod-
els because we will use a hard disk as a temporary space to store
variables. Our aim is to solve very large models, which can not be
solved by a single computer and requires parallel processing tech-
niques. Table 2 shows that our NDBBD method is slower than the SBBD
method with a smaller model size. However, the performance gap nar-
rows as the size of the model increases. Finally, with more than half
a billion equations, the SBBD method is unable to solve the system as
the model is too large to feed into the memory of a single computer
alone.

Ha and Kompas (2016) use a parallel solver in Harwell Subroutine
Library (HSL, 2013) to solve intertemporal CGE models using the SBBD
ordering technique. The solver requires the matrix to feed-in a single
process before it redistributes the matrix blocks to other processes to
solve the matrix in parallel. This bottleneck prevents matrix size from
unlimited growth. In fact, an indexation convention of that solver pre-
vents models with very large block sizes to be solved. We have amended
this procedure to be able to handle models with nearly 200 million
equations (the SBBD case). However, when the matrix size reaches half
a billion equations, SBBD fails. Only our NDBBD approach can solve the
model.
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6. Solving for world climate change effects

Climate change is a world-wide phenomenon and requires a coor-
dinated global action. The IPCC (2014) report has shown a surge in
averaged combined land and ocean surface temperature by 0.85 [0.65
to 1.06]oC over the period 1880 to 2012. As a result, changes in cli-
mate have caused wide-spread impacts on all continents and oceans,
e.g., changes in precipitation levels, shifts in the ice cap, altered hydro-
logical systems, threats to the livelihood of terrestrial, freshwater and
marine species and negative impacts on crop yields. Changes in extreme
weather events have also been observed in the last few decades (IPCC,
2014).

Nevertheless, climate change affects countries differently. This fact
alone is undoubtedly an obstacle to consensus and may partly explain
why conflicting arguments remain despite the Paris Agreement. There
is a vast literature evaluating the effects of climate change on the world
economy in a CGE setting: Bigano et al. (2008), for example, evalu-
ate the impact of changing sea levels and tourism flows to the world
economy using a modified static GTAP-E model; Burniaux and Truong
(2002) and Bosello et al. (2006) evaluate the impact of climate change
via changes in human health also using a GTAP-E model; Roson and
Sartori (2016) take a more broader approach to climate change impacts
by estimating climate change effects via six different pathways, i.e., sea
level rise, variation in crop yields, heat and labor productivity, human
health and tourism, and household energy demand. However, Roson
and Sartori (2016) can only evaluate a first-order approximation of the
impacts on real GDP by evaluating the impact of the above pathways to
each of the GDP components.

In this section, we take advantage of our new solution approach
to evaluate the impact of climate change using an intertemporal CGE
model for the entire world. This provides a clear advantage over the
traditional static aggregate approach (e.g., Bigano et al. (2008) was

able to run a GTAP model for only 16 regions). For the climate change
shock, we use the Roson and Sartori (2016) estimation of the six climate
change impact pathways as 3-category shocks to our model. Specifi-
cally, we allow for (a) land losses due to sea level rises via changes
in factor endowments for land in the model; (b) variations in crop
yields, heat and labor productivity and human health impacts through
shifts in model-specific productivity variables; and, (c) demand shifts of
selected goods (electricity, gas, transportation and recreation activities
etc.). The climate change shocks were applied gradually in linear form
from now until 2100. An overall 3oC increase in the global temperature
was adopted.

Table 3 lists the top ten ‘winners and losers’ from climate change
impacts, as a comparator to the first-order recursive results in Roson
and Sartori (2016). Results for the full set of 112 countries are avail-
able from the authors on request. While the impact patterns (negative
or positive) are roughly comparable between the two approaches, the
magnitudes of the impacts are very different. For some of countries, in
particular those where climate change effects are small or even posi-
tive, the first-order recursive estimation tends to overstate the climate
change impact on GDP in comparison with the GTAP-INT approach.
This is not surprising since agents in the intertemporal CGE model are
adjusting their consumption and production behaviours to partially mit-
igate the climate change impact. For other countries, however, the neg-
ative effects of climate change in the intertemporal GTAP-INT model
dominate, and are much larger than the first-order recursive estimates.
It depends on location and the distance to the equator (e.g., Indone-
sia, Sri Lanka, India, the Philippines and the Rest of Western Africa).
Indeed, despite any mitigation behaviour, climate change impacts are
clearly severe for some regions, especially for West Africa, South Asia
and Southeast Asia. Results for GDP falls in the USA are −0.48 and
−0.16, or with falls in GTAP-INT three times larger than the results in
Roson and Sartori (2016).

Table 3
Top ten ‘winners and losers’ from climate change: intertemporal vs first-order estimation (% change in GDP).

Countries/regions GTAP-INT∗ First order∗∗ Countries/regions GTAP-INT∗ First order∗∗

Rest of Western Africa −24.00 −8.93 Canada 0.16 1.27
Senegal −19.15 −9.58 Poland 0.16 0.96
Nigeria −15.54 −13.93 Austria 0.21 1.95
Sri Lanka −13.34 −6.40 Czech Republic 0.24 1.44
Philippines −12.93 −7.42 Latvia 0.27 0.97
Malawi −12.90 −9.76 Rest of Europe 0.34 0.01
India −12.76 −6.24 Slovakia 0.63 1.23
Rest of Southeast Asia −12.71 −7.32 Malta 0.65 −6.55
Tanzania −12.51 −8.79 Lithuania 0.66 1.10
Indonesia −12.45 −6.80 Belarus 1.17 0.18
Source: ∗ Authors’ calculation. ∗∗ From Roson and Sartori (2016).

Fig. 3. Intertemporal vs recursive solution methods: trade policy analysis.
Sources: Authors’ calculation.
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7. Intertemporal vs recursive solutions: trade barriers

In this section we further examine the difference between the recur-
sive and our intertemporal analysis. Table 3 has already indicated the
differences between GTAP-INT and the first-order recursive approaches
for climate change impacts. Here, we concentrate on the effects of trade
barriers. In order to minimise the ‘noise’ in our comparison, we adopt
a naive static expectations assumption for our recursive model, i.e., we
replace the shadow price of capital (#) in Equation (2) as an expectation
variable and assume a naive static price expectation, so that the next
period shadow price is equal to that of the current period (#t+1 = #t).
By doing so, we simply assume #̇t = 0 and the motion Equation (2) for
# becomes the intra-temporal equation. We solve the model forward
by the capital motion equation, so that next period’s capital will be
equal to the current period capital stock plus investment minus depre-
ciation.

There are two points to be noted with the recursive method. First,
there will be no guarantee of convergence in the long run even though
both models are constrained (by our design) to have the same steady
state. The recursive model consists of a system of first-order differential
equations for capital stocks (in each country and region) and depend-
ing on the the form of the expectation function, it is difficult to prove
convergence. Even with rational expectations, a recursive analysis does
not imply a steady state outcome Dixon et al. (2005).

Second, it is interesting to see that our NDBBD method can also
apply to a recursive methodology and that we can employ parallel
computing resources to accelerate the solution time in this setting. A
recursive model, in a sense, is just an intertemporal model without the
shadow price (or jump) motion equation. Therefore, it can be declared
in the form of an intertemporal model and its equation and variables
can be reordered by time and region to form an NDBBD matrix and
solved by our NDBBD method. That makes recursive modelling much
easier to do and we do not need to obtain special software packages to
generate recursive solutions.

To compare the two intertemporal and recursive solution methods,
we simulate a typical hypothetical trade protectionism policy change,
where, for example, North America applies a 40% increase in the tariff
barrier for goods and services from East Asia, implemented (in full)
ten years from now. Fig. 3 shows quite different impacts on GDP for
the two regions and across models. Since there is no feedback from
the future, the recursive model is not responsive to the change in an
announced policy (the horizontal line at the beginning of the sequence)
until the actual increase in the tariff rate; while agents in intertemporal
model can adjust their current consumption and production behaviors
in advance, to partly mitigate the impact of an announced change in
policy.

The above analysis indeed shows a clear advantage of the intertem-
poral solution in comparison with a recursive solution method, even in
the format where we use a static expectations assumption. At the very
least, if we have to solve models recursively, our NDBBD method also
helps to reduce computational time by employing parallel resources,
something that is not possible for the traditional ‘one period after
another’ sequential recursive method.

8. Concluding remarks

In this paper, we provide an algorithm to solve NDBBD matrices in
parallel. By reshaping the first-order matrix arising from intertemporal
regional CGE models into NDBBD form, and employing parallel process-
ing techniques to accelerate computation time, the algorithm can help
to solve very large regional and intertemporal models, which can not
be solved otherwise.

We have thus shown that we do not need to reduce the size
of CGE models, either in terms of size (i.e., aggregating by region)
or by adopting static or adaptive price level expectation assump-
tions, and hence losing valuable information, for the sake of com-
putational time and capacity. Although this paper is largely a tech-
nical exercise, the model approach should benefit both researchers
and policy makers around the word. In our numerical analysis,
for example, we show how GTAP-INT can be used to solve a
global trading system with more than 500 million equations; a size
large enough to determine the potential economic effects of climate
change for each of 112 countries to 2100. That provides a level
of detail not possible until now. We also compare our method to
the standard recursive approach for both climate and trade effects
and show that our method is capable of analysing intertempo-
rally optimal or forward-looking behaviour, which cannot be done
with traditional static and adaptive expectations or recursive model
approaches.

Our next step is to determine the actual losses in GDP (i.e., not
just falls or changes in growth rates) from climate change effects
for all 140 countries in the GTAP database across different poten-
tial global temperature increases. This will allow us to determine the
potential gains from complying with the Paris Accord and a full com-
parative economic analysis of the effects of climate change for each
country in the database over time. Existing methods, which aggregate
countries into regions mask individual country effects with regional
averages. This too loses valuable information needed by policy mak-
ers.

Acknowledgements

The computations and graphical representation in this paper have
been carried out with the help of the following software libraries:
Portable, Extensible Toolkit for Scientific Computation (PETSc) 3.7.0 at
Argonne National Laboratory (Balay et al., 1997; 2016a, b); Message
Passing Interface (MPICH) 3.2.7; HSL Mathematical Software Library
(HSL, 2013); the GNU Compiler Collection (GCC) 6.3.0; and R R Core
Team (2016). The details on software libraries and packages can be
found in Appendix A. The authors would like to thank the devel-
opers of these software libraries for sharing their work. Appendix B
describes our hardware configuration. The computational source code
used in our paper is available on request for non-commercial pur-
poses.

This paper was first presented at 3rd International Workshop on
‘Financial Markets and Nonlinear Dynamics’ (FMND), June 1–2, 2017,
Paris, France, with special thanks to the organisers.

109



T. Kompas, P. Van Ha Economic Modelling 80 (2019) 103–110

Appendix A. Software

Table A.4
The list of software and libraries used in the numerical simulations.

Name Version Source
Operation system Ubuntu 16.04 http:www.ubuntu.com
Compiler GCC 6.2.0 http:gcc.gnu.org
Message Passing Interface MPICH2 3.2–7 http:www.mpich.org
Matrix manipulation Petsc 3.7.0 http:www.mcs.anl.govpetsc
Matrix solver HSL1 2013 www.hsl.rl.ac.uk
Graphical plot R2(R Core Team, 2016) 3.2.3 https:www.r-project.org
Note: (a) Sub-packages used: MA48,HSL_MC51. (b) Packages used: reshape 0.8.6 (Wickham, 2007) maptool
0.8.41 (Bivand and Lewin-Koh, 2017); ggplot2 2.2.1 (Wickham, 2009); RColorBrewer 1.1.2 (Neuwirth, 2014).

Appendix B. Hardware configuration

The parallel computing exercises are carried out with three computers: Lenovo 32 G ram 128 G SSD and 500 G HDD. The network devices are
TP-LINK TL-SG1008D Gigabit switch.

Appendix C. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.econmod.2018.08.011.
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